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Abstract: Coral health is currently diagnosed retroactively; colonies are deemed “stressed” upon
succumbing to bleaching or disease. Ideally, health inferences would instead be made on a pre-
death timescale that would enable, for instance, environmental mitigation that could promote coral
resilience. To this end, diverse Caribbean coral (Orbicella faveolata) genotypes of varying resilience
to high temperatures along the Florida Reef Tract were exposed herein to elevated temperatures in
the laboratory, and a proteomic analysis was taken with a subset of 20 samples via iTRAQ labeling
followed by nano-liquid chromatography + mass spectrometry; 46 host coral and 40 Symbiodiniaceae
dinoflagellate proteins passed all stringent quality control criteria, and the partial proteomes of
biopsies of (1) healthy controls, (2) sub-lethally stressed samples, and (3) actively bleaching corals
differed significantly from one another. The proteomic data were then used to train predictive models
of coral colony bleaching susceptibility, and both generalized regression and machine-learning-based
neural networks were capable of accurately forecasting the bleaching susceptibility of coral samples
based on their protein signatures. Successful future testing of the predictive power of these models in
situ could establish the capacity to proactively monitor coral health.

Keywords: artificial intelligence; coral reefs; dinoflagellates; global climate change; machine learning;
molecular biotechnology; proteomics; temperature

1. Introduction

Climate change threatens key ecosystems around the globe, with coral reefs being
at particular risk given the marked thermo-sensitivity of the framework-building coral-
dinoflagellate endosymbioses [1]. Consequently, scleractinian environmental physiology is
a well-established field [2], with many dozens of articles published annually on laboratory
exposures of diverse coral species to various environmental stressors (e.g., elevated tem-
peratures and ocean acidification [3]). In most cases, the implicit goal of these studies is to
improve predictions about how reefs will change in the coming decades, though the data
from such environmental challenge studies are rarely used to develop analytical tools.

Although laboratory experiments can never mimic the complexity of the natural envi-
ronment, it is possible that certain diagnostic features of corals garnered from aquarium
simulations might nevertheless provide insight into coral behavior (specifically in the
context of making predictions about the likelihood of a colony or genotype succumbing to
global climate change stress and consequently bleaching or becoming disease-ridden). If
(1) a particular analyte is only found in sub-lethally stressed corals that may, to the naked
eye, show no signs of aberrancy (e.g., paling tissues) and (2) these corals proceed to bleach
or become diseased, then this hypothetical biomarker (sensu [4]) could be an indicator of en-
vironmental stress that would be useful in making predictions about coral resilience. When
adopting this candidate biomarker approach, however, the degree of variation even within
clonemates located in close vicinity (i.e., presumably exposed to similar oceanographic
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conditions) has thwarted efforts to use gene expression [5] and molecular-physiological
response metrics [6–8] to delineate levels of coral health in an actuarial capacity. Coral-
dinoflagellate gene expression data are particularly variable [9], and of equal concern is the
fact that few studies have identified the same suites of biomarkers as being informative
for coral health diagnostics [10]. Furthermore, there is an absence of correlation between
gene expression levels and concentrations of the encoded proteins in corals and their di-
noflagellate endosymbionts of the family Symbiodiniaceae (R2 = 0.00–0.01) [11]; although
certain mRNAs may prove useful for molecular biology-driven predictive modeling efforts,
were one also interested in cellular mechanisms associated with the treatment of interest, a
proteomic, or preferably even a “multi-‘Omics” approach, would be necessitated [12,13].

In a recent, multi-‘Omics effort to elucidate the cellular mechanisms of acclimati-
zation to high temperatures in inshore genotypes of the common, framework-building,
Caribbean coral Orbicella faveolata, as well as cellular stress responses of lower-resilience
offshore conspecifics, both transcriptomic [14] and proteomic [10] approaches were em-
ployed (alongside the collection of growth [buoyant weight], pigmentation, and photosyn-
thetic data). It was found through these works that the ability to rapidly modulate lipid
trafficking may ultimately dictate whether or not a genotype is bleaching-susceptible or
bleaching-resistant. However, the “shotgun” proteomics approach taken was strictly based
on presence vs. absence.

To corroborate these findings with a fully quantitative approach, as well as gain greater
insight into the sub-cellular responses of this reef coral to elevated temperatures, a higher
resolution approach known as “isobaric tags for relative and absolute (protein) quantifi-
cation” (iTRAQ) was taken herein because it was hypothesized that the use of iTRAQ
labels would remove bias associated with the null results generated in the prior shotgun
analysis; briefly, when using mass spectrometry to profile proteomes, it can be impossible
to know whether failure to sequence a protein reflects the absence of that protein in the
sample (a true negative) or simply failure of the instrument to sequence that protein (a
technological artifact). Given that the O. faveolata high-temperature experiment generated
a mix of corals of differing genotypes from different environments that displayed a wide
range of phenotypic responses with respect to high-temperature tolerance (Table 1), it was
hypothesized that the proteomic data could be used to not only describe the cellular behav-
ior of corals of differing resilience states, but also to develop rudimentary models capable
of predicting bleaching susceptibility from protein biomarker signatures (an approach
advocated in prior works, e.g., [15]). Were a rigorously field-tested model later developed
that was capable of predicting bleaching susceptibility weeks or even months before the
advent of a high-temperature event, marine managers could attempt to mitigate local
environmental stressors in a way that may limit the corals’ stress loads (thereby fostering
resilience). Additionally, knowledge of a coral’s bleaching susceptibility could be useful for
reef restoration initiatives, in which bleaching-tolerant corals would clearly be better-suited
targets for out-planting than bleaching-susceptible conspecifics.
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Table 1. Details of the experimental iTRAQ samples. Please note that one sample (denoted by *) spilled in the speed-vac during preparation and so was not analyzed.
AB = actively bleaching (n = 2), BLR = bleaching-resistant (n = 14), BLS = bleaching-susceptible (n = 6), HC = healthy control (n = 10), HTA = high-temperature-
acclimating (n = 5), ID = indeterminant (not enough data to determine; n = 1), and SLS = sub-lethally stressed (n = 3). For the raw proteomic data, please see the
“host-batch A–C” and “endosymbiont-batch A–C” worksheets in the online supplemental data file. NA = not applicable.

Sample Name Reef of
Origin Shelf

Treatment (Temp.
× Time)

Genotype Colony Code
Health Designation Protein

Loaded (µg) iTRAQ Tag iTRAQ Batch
Colony Fragment

Normalizer mix of all mix of both mix of all mix of all NA NA NA 22 113 A
B5-7 * Cheeca Rocks inshore 30-5 lightyellow B5 BLR HC 22 114 A
C5-1 Little Conch offshore 30-5 black(a) C5 BLS HC 22 115 A
B5-4 Cheeca Rocks inshore 33-5 lightyellow B5 BLR SLS 22 116 A
A2-2 The Rocks inshore 30-31 skyblue A2 BLS HC 22 117 A
A4-5 The Rocks inshore 32-31 skyblue A4 BLR HTA 22 118 A
B3-1 Cheeca Rocks inshore 32-31 black(c) B3 BLR HTA 22 119 A
C5-2 Little Conch offshore 32-31 black(a) C5 BLS AB 22 121 A

Normalizer mix of all mix of both mix of all mix of all NA NA NA 22 113 B
A4-1 The Rocks inshore 30-5 skyblue A4 BLR HC 22 114 B
C2-2 Little Conch offshore 30-5 black(b) C2 BLS HC 22 115 B
D5-2 Cheeca Rocks inshore 30-5 grey60 D5 BLR HC 22 116 B
D6-6 Cheeca Rocks inshore 33-5 grey60 D6 ID SLS 22 117 B
A4-8 The Rocks inshore 30-31 skyblue A4 BLR HC 22 118 B
C5-7 Little Conch offshore 30-31 black(a) C5 BLS HC 22 119 B
D5-3 Cheeca Rocks inshore 32-31 grey60 D5 BLR HTA 22 121 B

Normalizer mix of all mix of both mix of all mix of all NA NA NA 22 113 C
A4-7 The Rocks inshore 33-5 skyblue A4 BLR HTA 22 114 C
C5-8 Little Conch offshore 33-5 black(a) C5 BLS AB 22 115 C
D5-5 Cheeca Rocks inshore 33-5 grey60 D5 BLR HTA 22 116 C
B5-1 Cheeca Rocks inshore 30-31 lightyellow B5 BLR HC 22 117 C
D4-8 Cheeca Rocks inshore 30-31 grey60 D4 BLR HC 22 118 C
D5-8 Cheeca Rocks inshore 30-31 grey60 D5 BLR HC 22 119 C
B5-2 Cheeca Rocks inshore 32-31 lightyellow B5 BLR SLS 22 121 C
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2. Materials and Methods
2.1. Overview of Methods and Justification

The first goal of this work was to re-profile the proteomes of coral samples from a
previously published experiment [10] using a more quantitative methodology. With these
proteomic data from corals of diverse genotypes that either succumbed to or resisted high-
temperature-associated bleaching ex situ, I sought to undertake two different statistical
approaches. First, I used the more traditional descriptive inferential methods to look at
relationships among the protein analytes, as well as the coral samples. The goal of this
analysis was to assess multi-collinearity across response variables, as well as to ascertain
that there was sufficient proteomic variation across genotypes and treatments to proceed
with analyzing the data in a predictive modeling framework. This was carried out at both
multivariate and univariate scales.

The second major analytical goal was to develop predictive models of coral bleaching
susceptibility. Two general approaches were taken; first, I used a simple, biomarker-based,
“bottom-up” approach known as “stepwise discriminant analysis” to identify the minimum
number of proteins that could resolve differences among samples. This was undertaken as
a potential cost-savings approach; why measure the concentrations of dozens to hundreds
of proteins (USD $250 at the time of analysis), when only 1–2 proteins could be targeted
by, for instance, a Western blot or customized ELISA? Then, I took a more sophisticated,
“top-down,” machine-learning approach in which all proteins were initially considered
as informative analytes. Although the resulting pipelines might not be optimal for all
coral species, the goal was to outline how one would proceed to use molecular data to
build predictive models of coral health. Each procedural step outlined in this paragraph is
described in detail below.

It is worth noting here that proteins were chosen as putative predictors in this analysis
simply because I had already collected proteomic data for purely functional purposes at
the advent of the project to better understand what occurs in coral cells as temperatures
change [10]. In other words, proteins were opportunistically selected as predictors amongst
all other prospective analytes (e.g., mRNAs, lipids, metabolites, etc.), rather than because
they were hypothesized to be the most informing of all possible coral response variables. I
therefore recommend that others looking to forecast coral bleaching susceptibility based
on sub-lethal molecular-physiological response metrics consider not only proteins, but,
if funding permits, an entire suite of other potentially health-indicative parameters (also
including growth, fecundity, and other organismal-scale characteristics).

2.2. The Experiment and Field Site Climatology

The temperature challenge experiment has been described previously [10,14] but is
summarized in the Supplementary Materials. Briefly, O. faveolata colonies were tagged
and genotyped [16] at each of three sites: Cheeca Rocks (inshore; UKI1; intermediate coral
thermotolerance in situ), The Rocks (inshore; high coral thermotolerance in situ), and Little
Conch (offshore; low coral thermotolerance in situ), with a subset (Table 1) cored with
a pneumatic drill to ~5 cm diameter and allowed to recover first in situ and then in the
laboratory prior to exposure to either 33 ◦C for five days (“short-term”) or 32 ◦C for 31 days
(“long-term”) vs. controls at 30 ◦C (the ambient temperature at time of experimentation:
July 2017) for both sampling times. Entire coral “pucks” (i.e., cored fragments that had
been mounted on circular ceramic tiles with epoxy) were frozen in liquid nitrogen prior to
protein extraction (described below).

A detailed treatise on the climatology of the field sites can be found in the Supplemen-
tary Materials; briefly, although the mean monthly maximum is currently ~31 ◦C, in situ
temperature and coral fate-tracking data [17] have shown that these corals begin accruing
heat stress > 31.3 ◦C (rather than the mean monthly maximum + 1 ◦C = 32 ◦C); degree-
heating weekly calculations were instead made based on this threshold. Of the 180 coral
pucks, 21 were selected for proteomics (of which 1 was compromised during preparation.):
these included 5, 10, and 5 fragments from 2, 5, and 2 colonies from Little Conch, Cheeca
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Rocks, and The Rocks, respectively, which represented 2, 3, and 1 genotypes, respectively
(Table 1); all fragments from The Rocks were of the same genotype (“skyblue”). Of the
20 samples, 4, 5, 6, and 5 were from the short-term control, short-term high-temperature,
long-term control, and long-term high-temperature treatments, respectively.

2.3. Sample Designations

Fragments were given one of four “fragment health designations” at the time of
sampling based on their color score [18] changes in response to incubation in their respective
treatments (see [10] for color score data.): healthy controls (color score change of 0 upon
incubation at the control temperature; n = 10), high-temperature-acclimating samples (color
score change of 0 upon incubation at either of the two high temperatures; n = 5), sub-lethally
stressed samples (defined below; n = 5), or actively bleaching samples (color score decrease
≥2 upon incubation at either of the two high temperatures; n = 2). For the majority of
main-text analyses, the healthy control and high-temperature-acclimating samples were
combined (n = 15/20 samples) due to the study’s small sample size, such that only three
fragment health designations were considered. Since each coral fragment was sacrificed in
its entirety, the fate of an individual fragment was not tracked over the course of the month-
long experiment (only on the day of sacrificing); the justification for this design is because
sub-sampling each fragment multiple times over the course of the experiment would likely
cause stress, thereby biasing the interpretation of the high-temperature response. Instead,
it was hypothesized (and later validated statistically; see below.) that ramets derived from
the same source colony (but not necessarily of the same genet) would behave similarly with
respect to high-temperature exposure; if, for instance, a sampled fragment was resistant to
bleaching at 33 ◦C for five days, but a ramet made from the same source colony exposed
to 33 ◦C began bleaching by day 10, the 5-day-sacrificed sample would be deemed “sub-
lethally stressed.” On the other hand, if a sample sacrificed after five days of exposure to
33 ◦C did not demonstrate bleaching, nor did a ramet from the same colony exposed to
this temperature for a longer period, the sacrificed fragment would be assumed to be a
“high-temperature-acclimating” sample.

Whereas the fragment health designation corresponds to the state of the sampled
biopsy, I was also interested in predicting a second parameter known as the “colony
health designation,” which is instead a property of the colony from which fragments
were generated and could be “bleaching-susceptible” or “bleaching-resistant” based on
fragment color score decreases of ≥2 or 0, respectively, in response to elevated temperature
exposure (32 or 33 ◦C; corroborated in a random subset of cases by (1) real-time PCR-based
analysis of endosymbiont DNA co-extracted alongside proteins or (2) host/endosymbiont
transcriptome contig ratios [10]). The colony health designation of one colony of the grey60
genotype, D6, could not be discerned since there were not enough ramets to fate-track the
collective colony response over the entire duration of the 31-day study (Table 1).

It is worth re-emphasizing the difference between the fragment and colony health
designations; the former is a property of the sampled fragment, with the latter a property
of the colony as a whole (see column headings in Table 1). This means that fragments from
a bleaching-resistant colony could be characterized by fragment health designations of
healthy control, high-temperature-acclimating, or sub-lethally stressed (but not actively
bleaching). In contrast, a fragment from a bleaching-susceptible colony could be any of
the four fragment health designations (e.g., actively bleaching at high temperatures or
healthy controls at control temperatures). With the 20 biopsies, I aimed to (1) describe the
proteome biology from corals exposed to elevated temperatures ex situ (both multivariate
and univariate analyses, with the latter for identifying differentially concentrated proteins)
and (2) use these laboratory data to devise predictive models of coral bleaching suscep-
tibility. The steps needed to realize each of these aims are described in detail below and
summarized in Table 2.
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Table 2. Statistical approaches. Only the approaches that yielded statistically significant results, identified differentially concentrated proteins (Table 3), or correctly
predicted coral bleaching susceptibility with high accuracy have been shown; please see Table S1 for a complete list of all methods employed. CHD = colony health
designation (bleaching-susceptible vs. bleaching-resistant). EP = experimental parameter (e.g., temperature). FDR = false discovery rate. FHD = fragment health
designation (the status of the coral fragment at time of sampling). GMR = generalized multivariate regression (also known as “gen-reg”). MDS = multi-dimensional
scaling. MPM = model percent misclassified. NA = not applicable. PERMANOVA = permutational multivariate analysis of variance.

Analytical Goal
Approach

Response Variables
(Y)/Predictors (X)

Acceptance
Criterion (a) Primary Finding (s) Data Location (s)

Uncover multivariate treatment effects
PERMANOVA 86 proteins/all EP alpha = 0.05 Effect of fragment health designation on host proteome Table 4

Non-parametric MANOVA MDS coordinates/
all EP

MDS stress < 0.1 and
alpha = 0.05 Effect of reef site on host and holobiont proteomes Table 4

Identify differentially concentrated proteins
Response screening analysis 86 proteins/all EP FDR-p < 0.01 9 differentially concentrated proteins identified Table 5 and Figure 2
Stepwise discriminant analysis 86 proteins/all EP MPM < 15% a 18 “proteins of interest” identified Table 5, Figures S1 and S2

Predict bleaching susceptibility
Fragment health designation (FHD; 15/5 training/validation samples)

Neural network FHD/86 proteins MPM < 10% Only model type with high accuracy Table 6, Tables S2 and S3
Colony health designation (CHD; 15/5 training/validation samples)

Neural network CHD/86 proteins MPM < 10% More flexible than GMR models Table 6, Tables S2 and S3
GMR-lasso CHD/86 proteins MPM < 10% All 86 proteins in final model Table 6
GMR-pruned forward selection CHD/86 proteins MPM < 10% Three proteins in final model Table 6

a Please note that validation MPM values were significantly higher (Table S1).
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2.4. Protein Extraction

Coral fragments (n = 21) were pulverized in liquid nitrogen by a hydraulic press
(Baileigh Industrial, Manitowoc, WI, USA) into a wet, sand-like consistency and frozen
at −80 ◦C. At a later date, ~100 mg of partially ground coral tissue (including powdered
skeleton) were transferred into a tube containing 1.2 mL of TRIzol™ (Invitrogen, Waltham,
MA, USA) and further homogenized with a mortar and pestle in a fume hood for 5–10 min,
or until no pieces of corals were visible to the naked eye and the solution was a uniform,
translucent pink. Then, 1 mL of TRIzol + coral tissue homogenate was transferred to a new
tube, and RNAs, DNAs, and proteins were extracted as in a prior work [19], though with
several modifications with respect to the protein extraction. Briefly, upon resuspending the
proteins in the final 1 mL of wash buffer (PWII; 95% ethanol with 2.5% glycerol), 500 µL of
the proteins in PWII were frozen at −80 ◦C to serve as a backup, with the remaining 500 µL
of proteins transported on dry ice to the Miami Integrative Metabolomics Research Center
at the University of Miami’s Miller School of Medicine. Proteins were then dried in a speed
vacuum (vac; Labconco, Kansas City, MO, USA), and the pellet was resuspended in 100 µL
of 0.5 M triethyl ammonium bicarbonate (TEAB; Thermo-Fisher Scientific, Waltham, MA,
USA) with 0.067% sodium dodecyl sulfate (SDS; hereafter TEAB-SDS).

2.5. Protein Quality Control

Upon dissolving the proteins in TEAB-SDS via vigorous vortexing (Vortex Genie,
Scientific Industries, Bohemia, NY, USA), a 5-µL aliquot was diluted 10-fold in water and
quantified using a BCA assay from Pierce (Waltham, MA, USA); this dilution step was
critical since both TEAB and SDS can interfere with BCA and other such assays at higher
concentrations. A second, 1–2-µL aliquot of protein was mixed with 2X sample buffer
(BioRad, Hercules, CA, USA; cat. 161-0737) with freshly added beta-mercaptoethanol,
boiled at 95% for 5 min, and loaded into a PHastgel gradient 4–15 polyacrylamide gel from
GE Healthcare (Chicago, IL, USA; cat. 17-0678-01). The gel was then loaded into the PHast
System (GE Healthcare) after inserting two PHastGel SDS buffer strips (GE Healthcare;
cat. 17-0516-01). Proteins (1–3 µL) were run alongside 1 µg/µL of BSA standard and
1 µL of Plus2® pre-stained protein standard (Thermo-Fisher Scientific; cat. LC5925) under
separation method 3. After ~2 h, the gel was washed thrice with water and then stained
with 10–20 mL of SimplySafe® blue stain (Invitrogen) for 1 h at room temperature. The
stained gel was then washed repeatedly with water until bands could be visualized with
the naked eye (typically overnight).

Since there are only eight iTRAQ labels (113–119 and 121; Sciex, Framington, MA,
USA) and 20 samples to be analyzed, three iTRAQ runs were required. It was hypothesized
that batch-to-batch variation could be a concern across the runs based on a prior study [19]
and so a normalizing sample (hereafter “normalizer”) that was run with each batch of
seven samples was created by mixing 1.2 µL of protein from each of the 21 coral samples
to be analyzed (including the one sample that was later compromised). This normalizer
was diluted to 66 µg in 90 µL such that it would be at the same concentration as the target
samples (~733 ng/µL), labeled with the 113 iTRAQ label in all three runs (22 µg/run), and
used as the denominator in the calculation of the ratios (iTRAQ results are yielded as ratios
to an arbitrarily chosen sample.) to control for batch variation.

2.6. iTRAQ

To the coral protein samples and three normalizers (22 µg protein in 30 µL of TEAB-SDS
for each), I added 1 µL of tris-2-carboxyethyl-phosphine (TCEP; Sigma-Aldrich, St. Louis,
MO, USA) to reduce the dissolved proteins’ disulfide bonds. Samples were then vortexed,
centrifuged at 15,000 RPM for 5 min (hereafter simply referred to as “spun”), and incubated
at 60 ◦C for 1 h. Samples were spun again and then alkylated with 1 µL of freshly prepared
84 mM iodoacetamide (Sigma-Aldrich) in water, vortexed, spun, and incubated in the
dark (in aluminum foil) at room temperature for 30 min. Samples were once again spun
and then mixed with 10 µL of 0.1 µg/µL sequencing grade modified trypsin (Promega,
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Madison, WI, USA; cat. V5111) for 3 h at 37 ◦C. Then, an additional 1 µL of trypsin was
added, and proteins were digested overnight at 37 ◦C. After spinning, samples (~43 µL)
were dried in a speed-vac as above and resuspended in 0.5 M TEAB (without SDS). Then,
they were mixed with 50 µL of isopropanol and 17–22 µL of the appropriate iTRAQ reagent
(Sciex iTRAQ Reagent 8-plex 25 U kit) according to the manufacturer’s recommendations
(lot#A7012): 18, 18, 22, 18, 17, 18, 20, and 22 µL for labels 113, 114, 115, 116, 117, 118, 119,
and 121, respectively (Table 1). Samples were then vortexed, spun, and incubated at room
temperature for 2 h.

Reactions were quenched with 100 µL of water for 30 min and dried to 10–20 µL in
the speed-vac. Then, samples from each batch of eight (the normalizer plus the seven
target samples; Table 1) were combined into the same tube and dried to completion. The
three pellets (each representing 176 µg of labeled proteins) were washed thrice with water,
drying to completion after each wash except for the last, in which 30 µL were left to be
later mixed with 30 µL of 2.5% trifluoroacetic acid. Acidified proteins (pH = ~2.2) were
then purified with Pierce graphite spin columns to remove any residual buffers, enzymes,
and/or insoluble material. iTRAQ-labeled samples were resuspended in 2% acetonitrile
with 0.1% formic acid prior to nano-liquid chromatography on an Easy Nano LC 1000™
(Thermo-Fisher Scientific) as described previously [20]. Finally, peptide eluates from a
2–98% acetonitrile gradient were individually run on a Q Exactive™ Orbitrap LTQ mass
spectrometer from Thermo-Fisher Scientific as in Musada et al. [21].

2.7. Mass Spectrometry Data Processing

RAW data files (Thermo-Fisher Scientific) from the mass spectrometer were loaded
into Proteome Discoverer® (ver. 2.2; Thermo-Fisher Scientific), and, in most cases, the
default conditions were used to query each of the two mRNA sequence libraries (as fasta
files) described below. These conditions included the Fourier transform mass spectrometer
being operated in MS2 mode with high-energy C-trap dissociation activation. I used
a peak integration tolerance of 20 ppm, and the peak integration method was based
on the “most confident centroid” algorithm. Precursor and fragment mass tolerances
were 10 ppm and 0.02 Da, respectively, and up to two missed cleavages were permitted.
The collision energy and precursor mass spanned 0–1000 and 350–5000 Da, respectively.
Under these conditions, both O. faveolata and Symbiodiniaceae dinoflagellate (Breviolum
+ Durusdinium hybrid assembly) assembled contig fasta files (hereafter “fasta databases”)
were queried (see Supplementary Materials for details). The two fasta databases, three
RAW mass spectrometry files, three MZML (open-access mass spectrometry peak list) files,
and six MZID (three MZML files queried against each of the two fasta files; open-access
mass spectrometry results) files have been made publicly available on the University of
California, San Diego’s (CA, USA) MassIVE repository (accession: MSV000086530; cross-
listed with Proteome Xchange [accession: PXD022796]). The same dataset has also been
deposited at NOAA’s National Center for Environmental Information database, which is
cross-listed with NOAA’s Coral Reef Information System database (accession: 0242879).

2.8. Mass Spectrometry Data Quality Control

In addition to a minimum peptide length of 6 amino acids, 144 amino acids were
set as the maximum. For both host and dinoflagellate fasta library querying, decoy and
contaminant databases were queried simultaneously such that false discovery rates could
be calculated. Only proteins whose confidence scores (i.e., q-values) fell below the false
discovery rate-adjusted alpha of 0.01 were included. It is worth noting that a higher level
of stringency than the more commonly used default, alpha = 0.05, was required to improve
the probability of correcting assigning each peptide to the correct compartment of origin
(coral host vs. dinoflagellate endosymbionts; other microbes were not considered in this
analysis.). Of these proteins, I only considered those with an iTRAQ label. Unlike DNA
sequencing, in which only nucleic acids with tags are sequenced, the mass spectrometer
generates a mix of peptide sequences with and without the iTRAQ tags [19], allowing for



Diversity 2022, 14, 33 9 of 22

an estimation of labeling efficiency (typically only 10–20%). It is worth mentioning that the
remaining, untagged proteins could be used for presence/absence analyses (sensu [10]).

As an additional quality control criterion, I only considered proteins sequenced in
all three iTRAQ batches. This is because, despite having (1) randomly allocated corals
from different genotypes and treatments to each of the three iTRAQ batches and (2) run
the identical, normalizing sample in all three batches, it was nevertheless possible that
batch effects could lead to type I or II statistical errors. For instance, if a peptide was only
sequenced in batch 1 but not in batches 2–3, it was not assigned a concentration of 0 in
samples of the latter two batches but was instead omitted entirely. Of the high-confidence
proteins found in each batch with iTRAQ labels, I further required that two map to the
same conceptually translated contig to instill greater confidence in protein identity and
compartment of origin (Table 3).

Table 3. Summary of proteomic data output from 20 coral samples. In total 42,316 MS/MS spectra
were produced (0.7–1.2 Gb of data per RAW mass spectrometry data file). Only proteins whose
confidence scores fell below the false discovery rate-adjusted q-value of 0.01 were considered in
the “Total sequenced peptides” row. It is worth noting that the typical coral host:endosymbiont
ratio is ~2:1 [11,22]; all values obtained herein (“Host/endosymbiont ratio”) were significantly lower
(Fisher’s Exact tests, p < 0.01), signifying a relative enrichment of dinoflagellate sequences via this
iTRAQ approach. In a shotgun proteomic analysis of a subset of 16 of these same samples [10],
approximately 25,000 holobiont peptides were sequenced, of which almost 800 passed all quality
control criteria; the 1.5:1 host:endosymbiont ratio of that analysis is statistically similar to the overall
1.2:1 value obtained herein (X2 p > 0.05). Please see the online supplemental data file for annotations
for all sequenced proteins (including those that did not pass quality control).

Quality Control Step #Host Peptides
(% of Previous Step)

#Endosymbiont
Peptides

(% of Previous Step)

#Host + Endosymbiont
Peptides (% of
Previous Step)

Host/
Endosymbiont Ratio

Total sequenced peptides 17,553 19,509 * 37,062 (100%) ~0.9:1
Total unique peptides 13,067 (74% *) 13,335 (68%) 26,412 (71%) ~1.0:1
Possessed iTRAQ tag 3233 (25%) 3531 (26% *) 6764 (26%) ~0.9:1

Found in all three batches 99 (3% *) 68 (2%) 167 (2.5%) ~1.5:1
Two peptides mapped to

same protein 46 (46%) 40 (59%) 86 (51.5%) ~1.2:1

Differentially concentrated proteins identified by response screening + stepwise discriminant analysis-derived
“proteins of interest”

17 (40%) 10 (25%) 27 (31%) ~1.7:1

* compartmental (i.e., host vs. endosymbiont) difference in percentage (p < 0.01; asterisk [*] placed next to higher
of two values).

2.9. Data Analysis and Proteomic Predictive Modeling

As described above, two different statistical approaches were taken. First, the stan-
dard molecular eco-physiological explanatory analyses (sensu [19]) were used (Table 2) to
document laboratory treatment (temperature, sampling time, genotypes, and their in-
teractions) effects on the coral holobiont partial proteomes; this included a multivariate
analysis aimed at (1) uncovering relationships among samples and analytes (principal
components analysis [on correlations of raw iTRAQ ratio data] and multi-dimensional
scaling [using standardized data to down-weigh the influence of highly concentrated
proteins]) and (2) determining multivariate treatment effects (permutational multivariate
ANOVA [PERMANOVA] using a Euclidean distance-based similarity matrix [PRIMER, ver.
7, Auckland, New Zealand] and non-parametric multivariate ANOVA [NP-MANOVA]
using multi-dimensional scaling coordinates [JMP® Pro 16, Cary, NC, USA]; alpha = 0.05 for
both). Then, a univariate analysis aimed at uncovering differentially concentrated proteins
was undertaken via JMP Pro 16′s response screening analysis (i.e., parallel assessment
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with a false discovery rate-adjusted alpha of 0.01). All remaining statistical analyses were
undertaken with JMP Pro 16.

For the second statistical approach, a series of predictive analyses were undertaken
(Table 2 and Table S1). Specifically, JMP Pro 16′s “model screening” platform was used to
test numerous modeling types in parallel to predict both the fragment and colony health
designations. The models included bootstrap forest, discriminant analysis, generalized
multivariate regression (using a variety of different algorithms; see Table S1.), k-nearest
neighbors, naïve Bayes, neural networks, partial least squares, stepwise regression, XG-
Boost, and support vector machines. Models were validated multiple ways: (1) a random
sample from each categorical bin was held back (“exclude 1/bin”); (2) a validation column
was made in which 5 of the 20 samples were held back (“15/5”; ensuring to include at least
one sample per coral health category); or (3) 25–30% of samples were randomly held back
(in which each fragment or colony health designation was not necessarily included as a val-
idation sample). In select cases, “test” samples were also incorporated to further decrease
chances of model overfitting. Please see the Supplementary Materials for additional model
validation details. For both univariate analyses and predictive model building, proteomic
data were log2-transformed.

In terms of selecting the superior fragment and colony health designation models, the
“model percent misclassified” was prioritized, i.e., those models with the highest accuracy.
When two models were characterized by the same validation accuracy, the one with the
lower training misclassification rate was prioritized. The validation model root mean
square error was used to break additional ties (with values ideally approaching 0). In
addition to these more holistic, complex, multivariate modeling types, I also employed a
candidate biomarker approach using stepwise discriminant analysis whereby I attempted
to identify the minimum number of “proteins of interest” (so called to distinguish them
from true differentially concentrated proteins) that could partition corals by the experi-
mental parameters with >85% confidence. This analysis is discussed in more detail in the
Supplementary Materials since the resulting models were not validated to the same extent
as the whole-proteome ones, nor were they undertaken with colony health designation
since this inherently complex physiological property required more robust constraining
and optimizing of the model parameters.

3. Results and Discussion
3.1. Overview

I sought to first present the more commonplace descriptive findings characteristic
of most molecular eco-physiological studies (e.g., [22]) to ensure that there was sufficient
proteomic variation to employ a predictive modeling approach. After first summarizing
the responses to elevated temperatures of the experimental corals, I then discuss global
proteomic effects across treatments and genotypes. Finally, I conclude this work by high-
lighting the most important and informative proteins for understanding coral responses
to high temperatures, as well as how these proteins could be used to develop predictive
models of coral bleaching susceptibility.

3.2. Coral Responses to Elevated Temperatures

When looking at the responses of the diverse genotypes from the three study reefs—
Cheeca Rocks, The Rocks, and Little Conch (Table 1)—to either short- (5-day) or long-term
(31-day) exposure to elevated temperatures (33 and 32 ◦C, respectively) in the laboratory,
4/5, 1/2, and 0/2 colonies, respectively, were resistant to bleaching; three colonies were
bleaching-susceptible; and one (D6) yielded indeterminant data. Although a significantly
higher proportion of bleaching-resistant colonies were from inshore reefs (X2 p = 0.02),
one of the two skyblue colonies from the most thermotolerant site, The Rocks, actually
demonstrated a marked degree of paling over the course of the study (based on color
score decreases and reductions in endosymbiont contig counts) and was therefore deemed
“bleaching-susceptible.” In other words, not all colonies of the same genotype displayed
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the same response ex situ to elevated temperature exposure (Table 1). This inter- and
intra-genotypic heterogeneity proved useful for model building (discussed in detail below).

3.3. Proteomic Data Output and Descriptive Multivariate Analyses

A summary of the proteins identified at each quality control step can be found in
Table 3. Briefly, 42,316 MS/MS spectra were generated across the three normalizer and
20 experiment coral samples. These spectra were distilled into >37,000 peptides: 17,553 and
19,509 host and endosymbiont proteins, respectively. Of these, ~30% were redundant across
samples, leaving approximately 13,000 unique proteins from each compartment. Only 25%
of these peptides had iTRAQ tags (~3000/compartment; a common pitfall of label-based
proteomics [19]), and an even smaller number (99 host coral and 68 Symbiodiniaceae
proteins) were labeled in all three iTRAQ batches. Upon filtering out proteins featuring one
only mapped peptide, 46 host coral and 40 Symbiodiniaceae proteins were featured in the
analyses discussed below. Although this small subset of proteins was nevertheless capable
of resolving certain differences in O. faveolata thermo-sensitivity (discussed below), it is
worth noting that other ‘Omics technologies (particularly RNA-Seq-based transcriptome
profiling) would surely produce a larger final subset of analytes that could be used in
predictive model building.

Temperature effects were not evident in the principal components analysis (Figure 1a,d)
or multi-dimensional scaling (Figure 1g,j) biplots of the 5-day samples. As the degree-
heating weeks increased from ~1 to 3 (day 31), the two actively bleaching samples (encircled
in red in certain panels of Figure 1) clearly demonstrated different proteomes, and this
was supported by PERMANOVA of the host coral partial proteome (effect of fragment
health designation, p < 0.05; Table 4). In fact, for most, but not all, experimental parameters,
the host coral proteome demonstrated greater variation (Table 4); this is in contrast to
proteomic analyses of temperature-challenged Indo-Pacific corals [22,23], in which the
dinoflagellates demonstrate a more pronounced protein-level response to stress-inducing
temperatures. It is worth mentioning, though, that the Indo-Pacific corals analyzed hosted
exclusively Cladocopium spp. dinoflagellates, vs. Breviolum and/or Durusdinium in the
samples analyzed herein; this could, in part, explain differences in relative proteomic
sensitivity to high temperatures among studies.

3.4. Methodological Comparison

A comparison between the results of a “shotgun” proteomic analysis vs. those of the
iTRAQ method featured herein can be found in the Supplementary Materials.
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Figure 1. Multivariate analysis of a partial Orbicella faveolata-Symbiodiniaceae proteome. Princi-
pal components analysis (PCA; (a–f)) was carried out with the 86 proteins that passed all qual-
ity control ((a–c); biplot rays excluded due to spatial constraints), as well as the 27 differentially
concentrated proteins (DCPs; including the “proteins of interest” [POIs]; (d–f)) for the 5-day
((a,d), respectively), 31-day ((b,e), respectively), and all 20 samples ((c,f), respectively). As a com-
parison, multi-dimensional scaling (MDS; (g–l)) was carried out with all 86 proteins (g–i) and the
27 DCPs + POIs (j–l). In all panels, the “C,” “H,” and “V” icons represent samples of the control
(30 ◦C), high (32 ◦C), and very high (33 ◦C) temperature treatments, respectively, and icons are
colored by their 2b-RAD genotype name (e.g., “skyblue” genotype samples colored sky blue) except
for genotypes black (b) and black (c), which are colored red and green, respectively. In (b,c,e,f,h,i),
red ellipses denote two samples that were actively bleaching at the time of sampling.
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Table 4. Permutational MANOVA (PERMANOVA). PERMANOVA of a Euclidean distance ma-
trix built from standardized, log2-transformed data using an unrestricted permutation of raw data
(sum of squares type III) model. One significant finding (p < 0.05) has been highlighted in bold.
NA = not applicable. PERMDISP = test of homogeneity of dispersion (to determine whether multi-
variate variance across samples within each experimental bin differed significantly from others under
the treatment of interest). In general, multivariate variability was only found to differ significantly
across genotypes; some genotypes were more variable than others in their multivariate response
(Figure S4). When a non-parametric MANOVA (NP-MANOVA) based on coordinates from the first
six, seven, and seven dimensions for the endosymbiont (multi-dimensional scaling stress = 0.06), host
coral (stress = 0.07), and holobiont datasets (stress = 0.07), respectively, yielded a conflicting finding,
the model term has been underlined.

Factor df Pseudo F p #Permutations Multiple PERMANOVA Comparisons
or NP-MANOVA Differences

Endosymbiont—40 proteins

Temperature (n = 3) 2 0.925 0.579 998
Temperature (n = 2) 1 0.812 0.657 990
Site 2 1.33 0.106 998
Shelf 1 1.24 0.219 965
Genotype * 5 1.037 0.407 999
Day 1 1.17 0.300 994
Temperature × day 1 1.095 0.380 999
Fragment health designation 1 1.071 0.383 965

Host coral—46 proteins

Temperature (n = 3) 2 1.27 0.140 998
Temperature (n = 2) 1 1.16 0.280 991
Site a 2 1.33 0.128 998 Significant site effect by NP-MANOVA
Shelf 1 1.20 0.229 964
Genotype * 5 1.23 0.153 998 Black(a) 6= grey60 6= skyblue 6= lightyellow
Day 1 1.027 0.381 993
Temperature × day 1 1.092 0.296 996

Fragment health designation 1 1.90 0.025 969 Sub-lethally stressed = actively bleaching 6=
healthy control

Host + endosymbiont—all 86 proteins

Temperature (n = 3) 2 1.11 0.289 998
Temperature (n = 2) 1 1.002 0.432 989
Site 2 1.32 0.100 997 Significant site effect by NP-MANOVA
Shelf 1 1.18 0.199 958
Genotype * 5 1.096 0.271 997
Day 1 1.088 0.355 995
Temperature × day 1 1.049 0.364 999
Fragment health designation 1 1.47 0.081 971

* PERMDISP p < 0.05. a PERMDISP p = 0.06.

3.5. Differentially Concentrated Proteins

Few proteins were differentially concentrated across the experimental factors; the
response screen identified six Symbiodiniaceae and three host coral proteins (Table 5 and
Figure 2) that were affected by any of the experimental treatments, and none of these
nine were significantly affected by temperature or temperature x time. Instead, reef site
and genotype had greater influences on individual protein concentrations, as did frag-
ment health designation (which significantly affected the concentration of one host and
one Symbiodiniaceae protein). Of the six unique Symbiodiniaceae differentially concen-
trated proteins (Table 5), half could not be assigned an identity, and the function of a
fourth (apolipoprotein B100 C terminal) could not be inferred bioinformatically (online
supplemental data file). The remaining two, tyrosine decarboxylase 1-like and sec34
sodium channel protein 11, are putatively involved in metabolism and protein traffick-
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ing, respectively, based on analysis of their conserved domains. The latter was main-
tained at higher levels in the gastrodermal cells of the corals of Cheeca Rocks relative to
offshore corals.
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Figure 2. Heat map of differentially concentrated proteins (bold font with asterisks; n = 9 (Table 5))
and stepwise discriminant analysis-derived “proteins of interest” (n = 18) for a subset of 15 of the
20 coral samples (those for which the same genotype was tested across multiple treatments). The lone
differentially concentrated protein identified by the response screen that was not also a protein of
interest has been highlighted in green (see also Figure S3). Please note that those samples exposed to
32 or 33 ◦C were sampled after 31 and 5 days, respectively; for control (30 ◦C)-temperature samples,
the sampling time (in days) has been included in parentheses next to the sample code. Also note that
the protein isolated from the B5 genotype fragment at the 5-day sampling time was compromised
during the protein library preparation and not analyzed.

The three coral host differentially concentrated proteins (Table 5)—myosin 11, sacsin
(HSP70 co-chaperone), and concanavalin A-like lectin/glucanase—are involved in the
musculature, stress response, and cell adhesion, respectively, based on bioinformatic
analysis of their conserved domains. The concentration of the former was affected by both
shelf and genotype, with inshore genotypes synthesizing higher myosin 11 levels. Sacsin’s
concentration was affected only by site; corals of Cheeca Rocks maintained higher levels
of this protein. Concanavalin-A was the only host coral protein affected by the fragment
health designation, and it was significantly higher in concentration in actively bleaching
corals. This well-studied lectin is a mitogen that strongly binds glycoproteins [24], and it
has been hypothesized (but never directly shown) to play a role in coral immunity [25].



Diversity 2022, 14, 33 15 of 22

Although it is tempting to implicate a role of immunity in coral bleaching, it is important to
note two things. First, only two samples were actively bleaching at the time of sampling
(i.e., low sample size). Secondly, these two samples had already paled markedly at the time
of sampling (day-31); as such, this protein is associated with bleaching and not necessarily
involved in the bleaching process. Although immunity, as well as host-dinoflagellate
interactions, by definition, are inextricably involved in coral bleaching [26], a larger sample
size with a more refined temporal sampling scheme would be needed to implicate a role of
this lectin in the underlying cellular mechanisms.

3.6. Stepwise Discriminant Analysis-Based Coral Biomarker Profiling

Although characterized by high training model accuracies for a number of experimen-
tal parameters (Figures S1 and S2), the biomarker-based stepwise discriminant analysis
validation misclassification rates were high (Table S1); for this reason, these results are
discussed in the Supplementary Materials only.

3.7. Proteomic Predictive Modeling of Coral Fragment Condition

A variety of proteomic data-trained predictive models were built in hindcasted
manner to attempt to use molecular data to forecast bleaching susceptibility, and, in
general, only the machine-learning-based neural networks were capable of accurately
predicting the fragment health designation (Table 2, Table 6, Tables S2 and S3). One
representative model is shown in Figure 3b,c. The multivariate plots of Figure 1, as well
as the partial least squares-based correlation loading plot (Figure 3a) in part highlight
why simpler modeling types failed (including the aforementioned stepwise discriminant
analysis). From Figure 1, it is clear that the proteomes of the two actively bleaching
samples were significantly different from those of the healthy control and sub-lethally
stressed corals (corroborated by PERMANOVA; Table 4). As such, a simple modeling type
like stepwise discriminant analysis (Figures S1b and S2b) could correctly classify stressed
corals (actively bleaching + sub-lethally stressed) from healthy corals at >95% accuracy.
However, from Figure 3a, it is clear that there is overlap across the three fragment health
designations when looking at all 86 proteins. This explains why, when validating the data
in Figures S1b and S2b with holdback samples (or other means), stepwise discriminant
analysis model misclassification rates as high as 40% were obtained (Table S1).
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Table 5. Differentially concentrated proteins. Site (n = 3: Cheeca Rocks, The Rocks, and Little Conch), shelf (n = 2: inshore vs. offshore), temperature-A (n = 3: 30,
32, and 33 ◦C), temperature-B (n = 2: control vs. high [pooled over time]), genotype (n = 6; Table 1), time (n = 2: 5 vs. 31 days), temperature x time (n = 4), and
fragment health designation (FHD; n = 3) were tested individually in a response screening analysis (false discovery rate-adjusted p < 0.01 with log2-transformed
data), and only experimental factors that significantly affected concentrations of at least one protein have been included. When a protein could not be identified, the
top BLAST hit against the Symbiodinium microadriaticum genome has been included in parentheses in the “Identity” column. All 11 (9 unique; repeated proteins
denoted by *) coral and endosymbiont differentially concentrated proteins featured in the respective stepwise discriminant analysis (i.e., “proteins of interest”)
except for SYMBOF_DN177194_c0_g1, which was not included in the endosymbiont stepwise discriminant analysis model of time. Please see Figure S3 for a Venn
diagram depicting the degree of differentially concentrated protein vs. protein of interest overlap.

Comparison df #Proteins Transcriptome Accession Identity Trend

Endosymbionts

TIME 1 2 1. SYMBOF_DN80090_c0_ tyrosine decarboxylase 1-like 5 > 31 days
2. SYMBOF_DN177194_c0_g1 b apolipoprotein B100 C terminal 5 > 31 days

SITE 2 3 3. SYMBOF_DN99804_c0_g1 a,b sec34 sodium channel protein 11 Cheeca Rocks > Little Conch
4. SYMBOF_DN160797_c0_g1 b unknown (OLQ08781.1) The Rocks + Cheeca Rocks > Little Conch
5. SYMBOF_DN194918_c0_g1 b unknown Little Conch + Cheeca Rocks > The Rocks

GENOTYPE 5 1 * SYMBOF_DN160797_c0_g1 b unknown (see also endosymbiont #4.). grey60 > lightyellow

FRAGMENT HEALTH
DESIGNATION 1 1 6. SYMBOF_DN107829_c0_g1 b unknown (OLP80463.1) healthy control > actively bleaching

Host coral

SITE 2 1 1. OFAVBQ_DN225385_c0_g1 c,d sacsin Cheeca Rocks > Little Conch + The Rocks
SHELF 1 1 2. OFAVBQ_DN217378_c2_g1 myosin 11-like inshore > offshore

GENOTYPE 5 1 * OFAVBQ_DN217378_c2_g1 myosin 11-like (see also host #2.) grey60 + skyblue > lightyellow
FRAGMENT HEALTH
DESIGNATION 1 1 3. OFAVBQ_DN225503_c2_g1 concanavalin A-like lectin/glucanase actively bleaching > healthy control

(1.5-fold)
a protein also affected by shelf: inshore > offshore. b >2-fold difference between most extreme values. c under selection in other coral species [27,28]. d marginal effect of colony health
designation: bleaching-resistant > bleaching-susceptible (p < 0.01 [non-false discovery rate-adjusted]).



Diversity 2022, 14, 33 17 of 22

Diversity 2022, 13, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 3. Partial least squares correlation loading plot and a representative neural network for fore-
casting coral bleaching susceptibility. In the three-factor, NIPALS-fit loading plot ((a); first two fac-
tors shown only), the black dots represent model terms (environmental predictors, e.g., genotype) 
that correlated strongly with the dimensionalized data (first four multi-dimensional scaling coordi-
nates; in blue) for the three fragment health designations (FHD): healthy controls (HC), sub-lethally 
stressed (SLS) samples, and actively bleaching (AB) coral fragments. In the representative, TanH-
activated, tri-nodal neural network ((b); kfold validation of five), the squared penalty method was 
used with a single tour (two “boosted” models with a learning rate of 0.1), and the blue boxes en-
capsulate the 86 proteins (of which a representative host coral and Symbiodiniaceae protein has 
been shown). The misclassification rate of this model was 0% (validation root-mean square error = 
0.64). To better highlight its structure, a mirror image has been shown (c) in which interior linkages 
are more clearly seen. See Figure S5 for an analogous colony health designation partial least squares 
correlation loading plot. In total over 21,000 neural networks were tested and simulated (Table S2 
and online supplemental data file). 

In contrast, the neural networks (Tables 6, S2, and S3) correctly classified the frag-
ment health designation of all validation samples that were held back from the training 
models, though their drawback is that they require input data from all 86 proteins; were 

-1.0

-0.5

0

0.5

1.0

Fa
ct

or
 2

 (X
 R

2 =
15

.6
6%

, Y
 R

2 =
18

.2
0%

)

100%

75%

50%

25%

offshore

30ºC

30ºC-day-5

day-5

30ºC-day-31

grey60

33ºC-5-day

day-31
black(c)32ºC

Cheeca Rocks

inshore

Dimension 1

Dimension 2

Dimension 3

Dimension 4

        HC
     HC

         HC

               AB

              AB

HC

       HC

        HC

      HC         HC

         HC

     HC

           HC

       HC

               SLS

         SLS
       SLS

-1.0 -0.5 0
Factor 1 (X R2=23.86%, Y R2=14.63%)

OFAVBQ_DN197447_c0_g1_i1OFAVBQ_DN200173_c1_g1_i3 2OFAVBQ_DN207472_c1_g1_i1 2
OFAVBQ_DN208635_c1_g2_i15OFAVBQ_DN217378_c2_g1_i3 2OFAVBQ_DN217768_c1_g1_i5 2OFAVBQ_DN218151_c4_g1_i1 2OFAVBQ_DN218976_c2_g3_i2 2OFAVBQ_DN219538_c0_g1_i8 2OFAVBQ_DN220419_c0_g1_i1 2OFAVBQ_DN220422_c1_g2_i1 2OFAVBQ_DN221955_c1_g1_i6 2OFAVBQ_DN222105_c0_g1_i1 2OFAVBQ_DN222214_c0_g2_i2 2OFAVBQ_DN222422_c2_g1_i4 2OFAVBQ_DN222591_c0_g1_i4 2OFAVBQ_DN223327_c1_g3_i5 2OFAVBQ_DN223381_c0_g1_i7 2OFAVBQ_DN223482_c3_g2_i3 2OFAVBQ_DN223562_c2_g1_i4 2OFAVBQ_DN223611_c1_g1_i7 2OFAVBQ_DN223630_c2_g1_i3 2OFAVBQ_DN223651_c2_g2_i5 2OFAVBQ_DN223859_c0_g3_i6 2OFAVBQ_DN224050_c2_g4_i1 2OFAVBQ_DN224213_c1_g2_i4 2OFAVBQ_DN224470_c0_g1_i6 2OFAVBQ_DN224692_c1_g1_i3 2OFAVBQ_DN224718_c1_g1_i7 2OFAVBQ_DN224723_c4_g1_i2 2OFAVBQ_DN224814_c0_g1_i1 2OFAVBQ_DN224866_c2_g1_i3 2OFAVBQ_DN224963_c0_g1_i1 2OFAVBQ_DN225086_c0_g1_i2 2OFAVBQ_DN225239_c1_g1_i3 2OFAVBQ_DN225308_c5_g1_i2 2OFAVBQ_DN225382_c1_g1_i3 2OFAVBQ_DN225385_c0_g1_i2 2OFAVBQ_DN225399_c5_g1_i6 2OFAVBQ_DN225425_c1_g1_i1 2OFAVBQ_DN225427_c5_g1_i3 2OFAVBQ_DN225479_c7_g1_i1 2OFAVBQ_DN225495_c1_g1_i1 2OFAVBQ_DN225503_c2_g1_i1 2SYMBOF_DN109024_c0_g1_i1 2SYMBOF_DN181000_c0_g1_i1 2SYMBOF_DN124375_c0_g2_i1 2SYMBOF_DN226142_c0_g1_i1 2SYMBOF_DN66333_c0_g1_i1 2

SYMBOF_DN26118_c0_g1_i1 2SYMBOF_DN99804_c0_g1_i1 2SYMBOF_DN156997_c0_g1_i1 2SYMBOF_DN108013_c0_g1_i1 2SYMBOF_DN228429_c0_g1_i1 2SYMBOF_DN183739_c0_g1_i2 2SYMBOF_DN160797_c0_g1_i1 2
SYMBOF_DN80090_c0_g1_i1 2SYMBOF_DN99018_c0_g1_i1 2SYMBOF_DN181266_c0_g1_i1 2SYMBOF_DN161300_c0_g1_i1 2SYMBOF_DN241944_c0_g1_i1 2SYMBOF_DN177194_c0_g1_i1 2SYMBOF_DN176772_c0_g6_i1 2SYMBOF_DN231313_c0_g1_i1 2SYMBOF_DN102933_c0_g1_i1 2SYMBOF_DN269443_c0_g1_i1 2SYMBOF_DN147436_c0_g1_i2 2SYMBOF_DN138851_c0_g1_i1 2SYMBOF_DN107829_c0_g1_i1 2SYMBOF_DN139390_c0_g1_i1 2SYMBOF_DN194918_c0_g1_i3 2SYMBOF_DN181666_c0_g2_i1 2SYMBOF_DN191254_c0_g1_i5 2SYMBOF_DN156077_c0_g1_i1 2
SYMBOF_DN97190_c0_g1_i1 2SYMBOF_DN105818_c0_g1_i2 2SYMBOF_DN239782_c0_g1_i1 2SYMBOF_DN190192_c0_g1_i2

          FHD

0.5 1.0

a

b c

skyblue

lightyellow

        HC

        HC

Figure 3. Partial least squares correlation loading plot and a representative neural network for fore-
casting coral bleaching susceptibility. In the three-factor, NIPALS-fit loading plot ((a); first two factors
shown only), the black dots represent model terms (environmental predictors, e.g., genotype) that
correlated strongly with the dimensionalized data (first four multi-dimensional scaling coordinates;
in blue) for the three fragment health designations (FHD): healthy controls (HC), sub-lethally stressed
(SLS) samples, and actively bleaching (AB) coral fragments. In the representative, TanH-activated,
tri-nodal neural network ((b); kfold validation of five), the squared penalty method was used with
a single tour (two “boosted” models with a learning rate of 0.1), and the blue boxes encapsulate
the 86 proteins (of which a representative host coral and Symbiodiniaceae protein has been shown).
The misclassification rate of this model was 0% (validation root-mean square error = 0.64). To better
highlight its structure, a mirror image has been shown (c) in which interior linkages are more clearly
seen. See Figure S5 for an analogous colony health designation partial least squares correlation
loading plot. In total over 21,000 neural networks were tested and simulated (Table S2 and online
supplemental data file).
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Table 6. Representative neural network and generalized multivariate regression models for predicting coral bleaching susceptibility. Of all optimizable model input
parameters for neural networks, only the number of tours significantly affected model performance; more tours resulted in superior models. All neural networks feature a
single hidden layer. When three numbers appear in the “Validation” column, they correspond to training, validation, and test samples, respectively. All fragment health
designation models featured three categories (i.e., healthy controls and high-temperature-acclimating samples were combined.). Please note that, with the exception of the
pruned generalized multivariate regression (gen-reg) model, the “Highly influential protein(s)” represent a subset of all proteins featured in the model. MPM = model
percent misclassified (i.e., 1 minus accuracy). NA = not applicable. RMSE = root mean square error. WD = weight decay. * featured in additional models.

Model Name Validation #Proteins
Type of

Activation
(# Nodes)

#Boosts
(Learning

Rate)

#
Tours

Penalty
Method

Training
RMSE

Training
MPM (%)

Validation
RMSE

Validation
MPM (%) Highly Influential Protein(s) Protein Identity

Fragment health designation

NTanH(2)-
NBoost(2) 15/5 86 sigmoidal(2) 2 (0.1) 100 WD 0.02 0 0.04 0

SYMBOF_DN160797_c0_g1 a

SYMBOF_DN231313_c0_g1_i1
OFAVBQ_DN225382_c1_g1_i3

integrin-linked protein kinase
serine/arginine-rich splicing factor 2
unknown protein w/ HEAT repeats

NTanH(4)-
NLinear(1)-
NGaussian(1)-
NBoost(2)

Kfold(5) 86
sigmoidal(4)
linear(1)
radial(1)

2 (0.1) 100 WD <0.00 0 <0.00 0
SYMBOF_DN177194_c0_g1 a

SYMBOF_DN156077_c0_g1_i1
SYMBOF_DN102933_c0_g1_i1

cilia & flagella-associated protein 57
tRNA (Ile)-lysidine synthase
calcium-dependent protein kinase 2

NTanH(2)-
NLinear(4)-
NGaussian(4)

Kfold(5) 86
sigmoidal(2)
linear(4)
radial(4)

0 100 absolute <0.00 0 <0.00 0
OFAVBQ_DN208218_c2_g1_i13
OFAVBQ_DN220422_c1_g2_i1
OFAVBQ_DN225382_c1_g1_i3

histone-lysine N-methyltransferase
unknown
unknown protein w/ HEAT repeats *

NTanH(3) b hold-
back(0.33) 86 sigmoidal(3) 0 100 WD 0.25 0.08 0.05 0

OFAVBQ_DN224050_c2_g4_i1
SYMBOF_DN156997_c0_g1_i1
SYMBOF_DN147436_c0_g1_i2

unknown w/endonuclease domain
reticulocyte-binding protein 2 homolog a
unknown protein w/ PHD finger 1 domain

NTanH(3)-
NBoost(5) Kfold(5) 86 sigmoidal(3) 5 (0.1) 1 squared <0.00 0 <0.00 0

OFAVBQ_DN222591_c0_g1_i4
SYMBOF_DN244033_c0_g1_i1
SYMBOF_DN156077_c0_g1_i1

PKD with egg jelly receptor c

DNA helicase ETL1
unknown

Colony health designation

NTanH(3)-
NBoost(3) Kfold(5) 86 sigmoidal(3) 3 (0.1) 100 WD 0.29 0.13 0.28 0

OFAVBQ_DN217378_c2_g1 a

SYMBOF_DN239782_c0_g1_i1
SYMBOF_DN99804_c0_g1 a

myosin-11-like (see Table 5)
polycystin-2
sec34 sodium channel protein 11

NLinear(3) 13/6 86 linear(3) 0 20 squared 0.01 0 0.07 0
SYMBOF_DN80090_c0_g1 a

SYMBOF_DN177194_c0_g1 a

OFAVBQ_DN217378_c2_g1 a

tyrosine decarboxylase 1-like
apolipoprotein B100 C terminal
myosin-11-like (see Table 5) *

Gen-reg with
pruned forward
selection

Kfold(5) 3 NA NA NA NA <0.00 0 0.11 0
OFAVBQ_DN218976_c2_g3_i2
OFAVBQ_DN222591_c0_g1_i4
SYMBOF_DN194918_c0_g1_i3 a

unknown
PKD with egg jelly receptor c

unknown

Gen-reg-ridge
regression Kfold(5) 86 NA NA NA NA 0.03 0 0.40 0

OFAVBQ_DN190522_c0_g2_i1
OFAVBQ_DN197447_c0_g1_i1
OFAVBQ_DN225239_c1_g1_i3

unknown
vitellogenin-2
calcineurin-binding protein cabin-1

a Differentially concentrated protein. b Featured in Figure 3b. c polycystic kidney disease and receptor for egg jelly-related protein (closely related to polycystin-2; see SYM-
BOF_DN239782_c0_g1_i1.).
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In contrast, the neural networks (Table 6, Tables S2 and S3) correctly classified the
fragment health designation of all validation samples that were held back from the training
models, though their drawback is that they require input data from all 86 proteins; were a
field coral biopsy analyzed via proteomics, and a different suite of proteins were sequenced
(a likely scenario given the stochastic nature of proteomics), a new model would have
to be built that would incorporate only those proteins found in all samples. This would
surely result in a reduction in the number of proteins in the final model; whether it would
also result in diminished accuracy remains to be determined through field-testing of these
machine-learning models (discussed below).

3.8. Proteomic Predictive Models of Colony Bleaching Susceptibility

In contrast to the neural network fragment health model, a simpler generalized re-
gression model was capable of accurately forecasting (0% misclassification rate) the colony
health designation (Tables 2 and 6), and, unlike neural networks, generalized regres-
sion (i.e., “gen-reg”) permits response variable reduction (both methods accommodate
multi-collinearity across response variables.). In the case of the pruned forward selection
model (Table 6), only three proteins could accurately forecast whether a colony would
be bleaching-susceptible or bleaching-resistant. This predictive power is impressive in
that the underlying training samples spanned fragments that were exposed to different
treatments and were therefore characterized by different health states (Table 1). In other
words, these three proteins represent entrained properties of the original host coral colonies
that could be discerned even as the fragments were subjected to elevated temperatures
in the laboratory. One of the proteins, SYMBOF_DN194918_c0_g1_i3, was also a differ-
entially concentrated protein, though the function of this Symbiodiniaceae protein could
not be deduced from alignment-based bioinformatics approaches. The host coral protein
OFAVBQ_DN218976_c2_ g3_i2 also could not be characterized; the top hit (XP_022804074.1;
e = 0) was an uncharacterized protein first identified in another coral, Stylophora pistillata.

The final protein in the pruned generalized regression model, OFAVBQ_DN222591_
c0_g1_i4, is a 100% match to a published O. faveolata sequence (XP_020618219.1; e = 0) that
was annotated as a “polycystic kidney disease and receptor for egg jelly-related protein-like
isoform X2.” This is an ion channel hypothetically involved in reproduction [29] or even
calcification [30], and, although it missed the false discovery rate-adjusted cutoff for being
deemed a differentially concentrated protein (p = 0.02 vs. p < 0.01), it was maintained
at 2-fold higher levels in bleaching-resistant vs. bleaching-susceptible corals. It is worth
noting that the Symbiodiniaceae homolog, polycystin-2, was also found to be a strong
predictor of the colony health designation in the NTanH(3)-NBoost(3) model (Table 6), and
it was also up-regulated in the two actively bleaching samples (3-fold over all remaining
samples); however, it was not considered a differentially concentrated protein at the false
discovery rate-adjusted p-value (p = 0.02). Nevertheless, the fact that the same protein was
(1) up-regulated in Symbiodiniaceae within bleaching corals and (2) maintained at higher
levels in bleaching-resistant coral hosts signifies that this ion channel not only could be
important as a health-informing biomarker, but it could indeed play a role in the cellular
mechanism underlying the bleaching process itself; it therefore should be prioritized in
future molecular analyses.

It is not always the case that those analytes that best describe a phenomenon are also
the best predictors; in fact, this is often not so [31]. However, in this instance, despite not
being a differentially concentrated protein, it appears that this ion channel, which has been
identified in prior proteomic analyses of corals [32], is a good predictor of colony bleaching
susceptibility and demonstrated a marked difference in concentrations between bleaching-
resistant and bleaching-susceptible corals in an experimental setting. Of all 86 proteins
analyzed, then, this ion channel may be the lone candidate for those looking to measure
concentrations of a single biomarker to assess bleaching susceptibility. In contrast, neural
network models require measuring all 86 proteins (i.e., no response variable reduction).
Whether these models can also predict bleaching susceptibility in field corals remains
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to be determined but is under active investigation using fate-tracked colonies along the
Upper Florida Keys Reef Tract that were sampled before, during, and after a bleaching
event in 2019. By inputting the proteomic data from biopsies that did and did not bleach
during this bleaching event, I can determine whether the models discussed herein are
capable of demarking a colony as bleaching-resistant or bleaching-susceptible before the
actual occurrence of visible bleaching (i.e., from the winter-spring, pre-bleaching sampling
times, during which the colonies’ health designations would be either healthy or possibly
sub-lethally stressed at worse). Based on the partial least squares-based colony health
designation correlation loading plot (with dimensionalized data; Figure S5), as well as the
high accuracy of the models upon validation with holdback samples (even despite their
spanning various fragment health designations), it is likely that such predictive accuracy
will be high at the field test sites; in the loading plot, only one bleaching-susceptible sample
clustered with the bleaching-resistant samples, and this sample was nevertheless correctly
predicted to be bleaching-susceptible based on all colony health designation models listed
in Table 6 and Table S3.

3.9. Predicting Coral Colony Resilience with a Molecular Biology + Machine-Learning Approach

Whether or not the bleaching resilience of O. faveolata colonies from locations farther
flung from the reefs from which these corals were collected can also be accurately predicted
is less certain; massive corals of the Florida Reef Tract have been considerably stress-
hardened and/or adapted to highly marginalized conditions over the past decades [17],
meaning that a distinctly different model might be needed to discern bleaching-susceptible
from bleaching-resistant corals in less impacted locations [33]. Machine-learning ap-
proaches are more flexible and can accommodate more complex environmental datasets;
although the generalized regression models may maintain utility over the wider Caribbean,
the neural network models have theoretically higher potential in this respect. Regardless,
field-testing the ability of these complex neural network models to accurately forecast
bleaching likelihood (and severity) is the logical next step towards using an ‘Omics +
machine-learning approach to model coral health in the Anthropocene. These colony-scale
resilience models could then be compared to those trained with exclusively environmen-
tal [34–36] and/or animal abundance data [37]. With respect to the latter, there is often
not a positive association between coral abundance and colony resilience [38]; given this
disconnect, a predictive model considering abiotic, ecological, and physiological data will
inherently have higher power to forecast timing, intensity, and spatial extent of bleaching
than a model featuring only temperature and coral cover (the current most-common pre-
dictors). Regardless of the final approach taken, and the predictors incorporated, it will be
critical that the models are flexible enough to accommodate phenotypic plasticity and/or
organismal adaptation [27,39].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d14010033/s1, Figure S1: Host coral stepwise discriminant analysis. Figure S2: Symbio-
diniaceae stepwise discriminant analysis. Figure S3: Venn diagrams depicting relative influence of
various environmental predictors on numbers of differentially concentrated proteins (DCPs) and
“proteins of interest” (POIs). Figure S4: T2 plot of multivariate variability for the healthy control (HC),
sub-lethally stressed (SLS), and actively bleaching (AB) samples. Figure S5: Partial least squares-based
correlation loading plot of the 20-sample dataset. Table S1: Additional statistical approaches with
log2-transformed protein concentrations. Table S2: Neural networks. Table S3: Additional neural
network models whose sample misclassification rates were 0%.
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